skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lee, Kiljae"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Conformal prediction (CP) is an important tool for distribution-free predictive uncertainty quantification. Yet, a major challenge is to balance computational efficiency and prediction accuracy, particularly for multiple predictions. We propose Leave-One-Out Stable Conformal Prediction (LOO-StabCP), a novel method to speed up full conformal using algorithmic stability without sample splitting. By leveraging leave-one-out stability, our method is much faster in handling a large number of prediction requests compared to existing method RO-StabCP based on replace-one stability. We derived stability bounds for several popular machine learning tools: regularized loss minimization (RLM) and stochastic gradient descent (SGD), as well as kernel method, neural networks and bagging. Our method is theoretically justified and demonstrates superior numerical performance on synthetic and real-world data. We applied our method to a screening problem, where its effective exploitation of training data led to improved test power compared to state-of-the-art method based on split conformal. 
    more » « less
    Free, publicly-accessible full text available January 22, 2026